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Identifying diseases symptoms 
and general rules using supervised 
and unsupervised machine learning
Fatemeh Sogandi 

The symptoms of diseases can vary among individuals and may remain undetected in the early stages. 
Detecting these symptoms is crucial in the initial stage to effectively manage and treat cases of 
varying severity. Machine learning has made major advances in recent years, proving its effectiveness 
in various healthcare applications. This study aims to identify patterns of symptoms and general 
rules regarding symptoms among patients using supervised and unsupervised machine learning. The 
integration of a rule-based machine learning technique and classification methods is utilized to extend 
a prediction model. This study analyzes patient data that was available online through the Kaggle 
repository. After preprocessing the data and exploring descriptive statistics, the Apriori algorithm 
was applied to identify frequent symptoms and patterns in the discovered rules. Additionally, the 
study applied several machine learning models for predicting diseases, including stepwise regression, 
support vector machine, bootstrap forest, boosted trees, and neural-boosted methods. Several 
predictive machine learning models were applied to the dataset to predict diseases. It was discovered 
that the stepwise method for fitting outperformed all competitors in this study, as determined 
through cross-validation conducted for each model based on established criteria. Moreover, numerous 
significant decision rules were extracted in the study, which can streamline clinical applications 
without the need for additional expertise. These rules enable the prediction of relationships between 
symptoms and diseases, as well as between different diseases. Therefore, the results obtained in this 
study have the potential to improve the performance of prediction models. We can discover diseases 
symptoms and general rules using supervised and unsupervised machine learning for the dataset. 
Overall, the proposed algorithm can support not only healthcare professionals but also patients who 
face cost and time constraints in diagnosing and treating these diseases.

Keywords Diseases symptoms, Classification methods, Association rules, Apriori algorithm, Machine 
learning algorithms

Advancements in healthcare analytics can benefit both doctors and patients, as they can help detect and diagnose 
diseases early on, ultimately improving healthcare quality and patient outcomes. The use of Machine Learn-
ing (ML) techniques to predict disease symptoms in patients is both promising and challenging in the field of 
Artificial Intelligence (AI). AI enables the analysis of vast medical datasets, enhancing diagnostics, predicting 
disease outcomes, and optimizing treatment plans. AI methods can discover patterns in patient data, aiding in 
early detection of illnesses and personalizing medical interventions. Additionally, AI contributes to operational 
efficiencies, streamlining administrative tasks and improving resource allocation. The continuous evolution of 
AI in healthcare analytics holds great promise for improved decision-making, patient outcomes, and overall 
healthcare system optimization. The reliability of AI has significantly benefited medical diagnostics in the modern 
era. AI has extended the capabilities of human vision, and utilized in medical research.

The application of ML in discovering diseases symptoms has the potential to revolutionize diagnostics, treat-
ment, and patient care, but further research and development are needed to overcome the existing challenges. 
Some ML algorithms have been used in healthcare field to predict different diseases like heart  disease1. Addition-
ally, Association Rules (AR) have been employed for knowledge extraction. These algorithms analyze data to 
identify patterns and make predictions, offering the use of ML techniques in predicting disease symptoms among 
patients has the potential to enhance patient outcomes, and enhance the efficiency of the health  centers2. Despite 
the potential benefits, the integration of ML in healthcare is still in its infancy, and there are several challenges 
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to overcome before widespread adoption can occur primarily due to the lack of user-friendly ML systems that 
cater to non-technical users. Therefore, the development of a model or system that facilitates the diagnosis of 
diseases using ML techniques is a promising and challenging aspect of AI. With this objective in mind, we have 
conducted a study to establish an AI-based methodology for the initial diagnosis of these symptoms. The appli-
cation of ML algorithms has been evident in numerous recent healthcare  works3. Several literature reviews have 
been conducted on the use of ML algorithms in diagnosing diseases. These reviews cover a comprehensive range 
of diseases and the application of various ML techniques for disease diagnosis. The research  work4 conducted 
a comprehensive review of ML-based disease diagnosis, examining the most recent trends and approaches in 
ML for disease diagnosis. Some of the main findings from these reviews include the use of ML algorithms like 
Naïve Bayes, Support Vector Machine (SVM), K Nearest Neighbor (KNN), and Random Forest (RF) for disease 
 diagnosis5. Also, the authors  of6 focused on the most common ML methods applied to extend AI applications, 
including neural networks, SVM, ANN, RF, Decision Trees (DT), Logistic Regression (LR), and Neural-boosted 
(NB). Woodman and  Mangoni7 also discussed the growing application of ML in diagnosing both common and 
rare diseases. Additionally,  Poudel8 provided a perfect overview of the most frequently used ML algorithms in 
disease diagnosis, along with a focus on the clinical challenges involved in relying on these algorithms. Fur-
thermore, the  research9 highlighted the benefits, methodologies, and functionalities of using ML algorithms in 
disease diagnosis in the healthcare sector. Ferdous et al.10 provided a literature survey on them in healthcare with 
the best accuracy in diagnosing diseases. Fatima and  Pasha11 highlighted the advantages and disadvantages of 
these methods and provided a comparative analysis of different ML techniques for disease diagnosis. Overall, 
these literature reviews offer valuable insights into the use of ML algorithms for disease diagnosis and provide 
a comprehensive understanding of the current trends and future research directions.

Supervised ML algorithms demonstrate impressive results when dealing with well-labeled datasets, and 
they are widely employed in various fields. The application of supervised ML in healthcare analytics empowers 
clinicians, administrators, and policymakers to make data-driven decisions, enhance patient care, and optimize 
healthcare  delivery12. Supervised ML plays a pivotal role in healthcare analytics too, particularly in predictive 
modeling. In healthcare, Supervised ML methods can be used to identify diseases and diagnose them, predict 
patient outcomes, and optimize treatment plans. Predictive modeling in supervised ML algorithms is the process 
of building a model that can predict future outcomes using historical data. After the in-depth search, Kumar 
et al.13 found that 85% of the supervised learning methods characterized the study, while the remaining 15% 
were characterized by unsupervised learning methods. In this regard, the Flores et al.14 surveyed the application 
of unsupervised ML methods in discovering latent disease clusters using electronic health records. The authors 
used Latent Dirichlet Allocation, and suggested a new model named Poisson Dirichlet model. The research 
 effort15 showed that K-Mean and SVM have also diagnosed and evaluated diabetes as an amalgamation of 
supervised and unsupervised ML techniques. In addition, Lim et al.16 provided an unsupervised ML model for 
discovering latent infectious diseases using social media data. The  research17 focused on an unsupervised ML 
algorithm for detecting patient clusters using genetic signatures. The authors could assign high-risk and chronic 
disease patients into a detected cluster using their genomic makeup. The study by Bose and  Radhakrishnan18 
employed unsupervised ML techniques to categorize patients with heart failure who utilized telehealth services 
in the home health setting. The researchers analyzed the differences between these subgroups in terms of patient 
characteristics, such as symptoms.

Predictive analytics is used to forecast future events by examining the correlation between input and out-
put variables. The increasing availability of electronic clinical data in the U.S. healthcare system has led to the 
growing popularity of predictive systems in  healthcare19. Some common predictive algorithms include ML and 
deep learning, which are subsets of AI. These algorithms use historical data to train algorithms that can predict 
future outcomes. For example, predictive models help assess the risk of patient readmission. Hospitals can use 
predictive analytics to estimate the length of a patient’s hospital stay. This aids in resource planning, bed man-
agement, and improving overall operational efficiency. On the other hand, predictive modeling is applied to 
identify fraudulent activities in healthcare billing too. Also, physicians can benefit from predictive models that 
offer insights into potential diagnoses based on patient data. Besides, predictive models are utilized to forecast 
the likelihood of diseases and adverse events. These models can analyze patient data to predict the likelihood of 
developing diseases  symptoms20. Unsupervised learning and predictive modeling are both important techniques 
in ML, each serving different purposes in data analysis and pattern recognition.

In unsupervised learning, the model works on its own to discover patterns and information in unlabeled data. 
AR learning is a type of unsupervised learning that investigates for the dependency of one data item on another 
and is used to extract hidden patterns from data. Additionally, AR mining can empower clinicians to make quick 
and automatic decisions, extract valuable information. The study’s findings are crucial for understanding disease 
symptoms, which is critical in initial triage to distinguish the severity of cases. Hence, this study aims to use AR 
mining to identify symptom in the patients and explore these patterns based on explanatory variables. Some 
notable papers on AR in healthcare. For the first time, Brossette et al.21 discussed the use of AR for discovering 
new patterns in hospital infection control and public health surveillance data. The authors proposed a process 
for analyzing surveillance data by comparing their confidences across different data partitions. The study  of22 
used AR mining to extract hidden patterns and relationships between diagnostic test requirements in real-life 
medical data. After that, Happawana et al.23 explored the use of AR mining techniques for generalizing diagnoses 
from a public health dataset based on techniques for reducing the search space. Additionally, Miswan et al.24 
presented a case study on using AR mining to analyze hospital readmission data. The authors discussed various 
related studies and techniques, such as data mining for hospital readmission. In COVID-19 epidemic, Tandan 
et al.25 discovered symptom patterns of COVID-19 patients using AR mining. In a similar way, the symptom 
patterns of COVID-19 from recovered and deceased patients are extracted by  work26 using Apriori AR mining. 
In another view point, Khafaga et al.27 constructed a prediction system for predicting diabetes by AR algorithm. 
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More recently, Cui et al.28 proposed the weighted Apriori algorithm for discovering AR from disease diagnostic 
data. The authors also designed an improved KNN algorithm as a pre-step to obtain more accurate associations 
on a higher level.

Now, we perform a detailed comparison of this work with the relevant prominent studies in the field of hybrid 
supervised and unsupervised ML. As a pioneer, Péran et al.29 focused on the classification of Parkinson’s disease 
and multiple system atrophy using supervised and unsupervised learning techniques applied to MRI data. After 
that, Ma et al.30 leveraged the phenotyping structure using the integrated of unsupervised and supervised ML 
methods for phenotyping complex diseases with a unique application. Also, Cai et al.31 presented an approach 
that combines unsupervised and supervised learning techniques to detect self-reported COVID-19 symptoms 
on Twitter. More recently, Sáiz-Manzanares et al.32 explored the application of supervised and unsupervised ML 
techniques in therapeutic interventions for children. In comparison to these existing methodologies, our study 
aims to identify patterns of symptoms and general rules regarding symptoms among patients using a combination 
of supervised and unsupervised ML techniques. This study utilizes the Apriori algorithm to identify frequent 
symptoms and patterns, which is a unique approach compared to the other studies. In other words, the study 
integrates a rule-based ML technique and classification methods to extend a prediction model. This approach is 
different from the studies that focus on a single algorithm or a specific type of disease. Additionally, our study 
applies several ML models, including Stepwise Regression (SR), SVMs, Bootstrap Forest (BF), Boosted Trees 
(BT), and NB methods, to predict diseases, demonstrating the versatility of our approach.

To the best of our knowledge, there is no work to utilize supervised and unsupervised ML algorithms to 
extract the common symptoms of the mentioned diseases. As aforementioned it is necessary to extend an inte-
grated diagnosis system of diseases using a suite of AI. In summary, our approach is distinct from other studies 
in several ways:

• Integration of rule-based ML and classification methods: Our study combines the Apriori algorithm with 
classification methods to identify frequent symptoms and patterns, which is a novel approach compared to 
other studies that focus on a single algorithm or a specific type of disease.
• Versatility of ML Models: We applied a range of ML models, including SR, SVMs, BF, BT, and NB methods, 
to predict diseases. This demonstrates the versatility of our approach and the ability to adapt to different 
disease scenarios.
• Real-world dataset: We used a real-world dataset from the Kaggle repository, which is not typically used 
in other studies. This allows our findings to be more generalizable and applicable to real-world healthcare 
settings.
• Survey of diseases and symptoms: Our study takes a unique perspective by surveying diseases and symptoms 
from multiple angles, rather than focusing on a single disease or specific type of symptom. This comprehensive 
approach allows us to identify patterns and general rules that can be applied across various diseases.
• Novel Approach to Disease Prediction: Our study integrates classification algorithms with ARs for extract-
ing relationships between diseases, symptoms, and improving disease prediction. This approach has not been 
introduced before in the literature, making our study a significant contribution to the field.

Therefore, this paper aims to model and predict disease symptoms using classification and AR methods. 
In this regard, we distinguish the most significant risk variables and the correlation between them after data 
preparation. Moreover, we compare the predictive performance of a range of different ML models to determine 
the best solution for diseases symptoms diagnosis. Also, AR mining has been used to extract symptom patterns 
of the diseases set to conduct intelligent diagnosis by extract valuable rules in this paper. The remainder of this 
paper is structured as follows: Section “Methodology” discusses related work. Section “Results” presents the 
details of the research methodology and dataset. Section “Conclusion and future research” covers the results and 
discussion. In the final section, we conclude the study with objectives, limitations, and research contributions.

Methodology
The proposed method is given in this section. The main goal is to exploring the relationship that exist between 
the disease symptoms and implement different types of ML techniques in discovering diseases symptoms to 
predict the diseases. In this regard, the proposed methods of supervised and unsupervised ML are explained 
for discovering diseases symptoms. The selection of algorithms was based on a thorough review of the literature 
and consideration of the specific research question and data characteristics. For supervised learning, we chose 
to use linear regression, SVMs, BF, BT, and NB methods because these algorithms have been widely used and 
shown to be effective in predicting diseases in various  studies4. For unsupervised learning, we chose to use the 
Association rule algorithm because it is a well-established method for discovering frequent patterns and rules in 
 data21–28. The Apriori algorithm is particularly useful for identifying patterns in large datasets and can be used to 
identify both frequent and rare events. Additionally, the Apriori algorithm can be used to identify patterns that 
are not necessarily linear or continuous, making it a useful tool for identifying complex relationships in data. 
We believe that the combination of these algorithms provides a comprehensive approach to identifying patterns 
of symptoms and general rules regarding symptoms among patients. The use of multiple algorithms allows us to 
leverage the strengths of each method and to identify patterns that may not be apparent using a single algorithm.

The study leverages a combination of programming languages and libraries to facilitate data analysis and 
ML tasks. Specifically, JMP scripting language, JMP data tables, and JMP modeling and ML are employed to 
streamline data preprocessing, model training, and evaluation. The data preprocessing process involves several 
key steps, including data import, data cleaning, and data transformation. Furthermore, the model training and 
evaluation phases utilize a range of techniques, including model screening, association analysis, model training, 
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and model evaluation. Additionally, various tools are utilized, such as JMP modeling and ML and JMP associa-
tion analysis, to support these tasks.

The approach starts with a data preparation, and the AR method. Then, classification algorithms are used 
and compared with each other to predict disease models. Figure 1 is a schematic overview of the proposed 
approach. The following subsections present the dataset description and data preparation, applied unsupervised 
and supervised ML methods as well.

Data preprocessing
Firstly, this subsection goes into the specifics of the disease dataset that was utilized, and then data preprocessing 
is performed in this research. Our dataset provides a comprehensive compilation of symptoms and patient profiles 
for a range of diseases. The mysteries of diseases can be unveiled with this disease symptom and patient profile 
dataset. The analytic results can show intricate relationship between patients and diseases. In other words, the 
proposed system can assist in the extracting the AR and development of predictive models for disease diagnosis 
and monitoring based on symptoms and patient characteristics. On this subject, we utilized an available online 
data set by the Kaggle Repository. In our study, we used a publicly available Kaggle dataset that does not contain 
personally identifiable information (PII). To handle the sensitive health data responsibly, we consider ensured 
data anonymization and maintained compliance with data privacy regulations, such as HIPAA and GDPR. By 
taking these measures, we aim to protect the privacy and confidentiality of the patient information, comply with 
relevant data protection regulations, and conduct the research in an ethical and transparent manner, prioritiz-
ing the rights and well-being of the study participants. The dataset offers a detailed examination of the intricate 
relationships between patients and diseases, comprising over 100 distinct medical conditions and featuring 3490 
records. The dataset offers a treasure trove of information including fever, cough, fatigue, and breathing difficulty, 
intertwined with age, gender, blood pressure, and cholesterol levels revealing the fascinating connections between 
symptoms, demographics, and health indicators. We aim to explore the hidden patterns, and uncover unique 
symptom profiles. The dataset has 10 attributes, which are given in Table 1.

A classifier can be ineffective in processing raw data in some cases due to features such as incompleteness, 
noise, and  inconsistency33. Data preprocessing is necessary for preparing a dataset to improve prediction accu-
racy in data mining and ML. The data was preprocessed before analysis, which included which included label 
encoding, data transformation, and handling outliers. During data preprocessing, label encoding is conducted 
to transform the data into numerical format. Categorical variables, which include symptoms, gender, blood 
pressure, cholesterol level, and the outcome variable (disease), are often non-numeric and represent various 
categories or groups. During data preprocessing, label encoding is conducted to transform the data into numeri-
cal format. When categorical data is transformed into numerical data, predictive modeling and classification 

Figure 1.  Pipeline of proposed research methodology.

Table 1.  Explanation of dataset.

Attribute name Description Data type

Disease The name of the disease or medical condition Nominal

Fever Indicates whether the patient has a fever (Yes = 1/No = 0) Binary

Cough Indicates whether the patient has a cough (Yes = 1/No = 0) Binary

Fatigue Indicates whether the patient experiences fatigue (Yes = 1/No = 0) Binary

Breathing difficulty Indicates whether the patient has breathing difficulty (Yes = 1/No = 0) Binary

Age The age of the patient in years Numeric

Gender The gender of the patient (Male = 1/Female = 0) Binary

Blood pressure The blood pressure level of the patient (High/Normal/Low) Nominal

Cholesterol level The cholesterol level of the patient (High/Normal/Low) Nominal

Outcome variable The outcome variable indicating the result of the diagnosis or assessment for the specific disease (Positive = 1/Negative = 0) Binary
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algorithms can effectively process and learn from the data. This transformation avoids misleading orderings, and 
enables the algorithms to create more accurate models, better generalize to new data, and ultimately improve 
model  performance34. On the other hand, In JMP software, to perform AR mining, the data needs to be in list 
format, and then it should be transformed to nominal format type. This process allows the software to analyze 
transactional data and identify items that have an affinity for each other, a technique frequently used in market 
basket analysis.

One of the main issues in ML is dealing with outliers. An outlier is a data point that deviates from the typical 
behavior exhibited by other data points. The presence of outliers can impact the performance of AI-based fore-
casting methods and the discovery of diseases symptoms. Therefore, ensuring that the dataset is free of outliers 
is a critical task for achieving superior prediction results.

Note that the limitations of the dataset and acknowledge any biases or incompleteness that may affect the 
interpretation and application of the findings. These limitations include sample size and representation, data 
collection methodology, missing or incomplete data, geographical and demographic limitations, and temporal 
limitations. To minimize the influence of these constraints and improve the applicability of the outcomes, it 
is essential to carefully interpret the findings, and recognize the potential limitations and the importance of 
thoughtful consideration when extrapolating the results to particular patient groups or clinical situations.

Applied unsupervised ML method
AR learning in unsupervised ML algorithms is a valuable method for uncovering interesting connections among 
features in a dataset. The Apriori, Eclat, and FP-growth algorithms are widely used for AR learning and are instru-
mental in identifying patterns and associations in large datasets, offering valuable insights for various applications 
such as market basket analysis, customer segmentation, and recommendation systems. These algorithms play 
a crucial role in fields like retail, healthcare, and finance, where they help in understanding customer behavior, 
optimizing product offerings, and improving business strategies. The Apriori algorithm, for instance, is essential 
for data scientists and businesses seeking to extract meaningful patterns and associations from their data. We used 
the Apriori algorithm, which has a computational complexity of O(nlog n), where n is the number of data points. 
The time complexity is O(nlog n) for training and O(1) for prediction. The space complexity is O(n) for storing 
the model coefficients. Extracted AR are valuable for predicting class values in early-stage diseases. However, 
different criteria can be used to measure the strength of these rules. Some of these criteria are described below:

Support: This metric indicates how often a given rule appears in the database being mined.

Confidence: This metric refers to the number of times a given rule turns out to be true in practice.

Lift: This metric is utilized to compare the confidence of a rule with the expected confidence, or how many 
times an if-then statement is expected to be found true.

These metrics help assess the effectiveness of AR in predicting class values for early-stage diseases.

Applied supervised ML method
By harnessing the power of basic health indicators, we can improve the understanding of diseases and their 
progression, ultimately leading to better patient care and more effective interventions. Predictive modeling in 
supervised ML algorithms aims to extend a model that can accurately predict the value of a target variable based 
on one or more input variable. In this context, we will briefly discuss several popular supervised ML algorithms, 
including SR, SVM, BF, BT, and NB methods.

SR
Sequential Regression (SR) is a statistical method utilized for feature selection within predictive modeling. It 
involves a systematic approach to identifying the optimal subset of predictors that exhibit the strongest correla-
tion with the target variable. Through an iterative process, predictors are added or removed from the model based 
on their statistical significance and impact on the model’s overall performance. This iterative refinement continues 
until a feature set that maximizes model performance is determined. However, the computational demands of 
SR can be substantial, particularly with large datasets. The selection of the best feature subset entails evaluating 
numerous feature combinations, leading to potential time constraints. Moreover, as the dataset’s feature count 
grows, the computational complexity escalates, rendering SR less feasible for certain scenarios.

SVM method
SVM are a supervised ML method that can be employed for both classification and regression tasks. SVM oper-
ates by identifying a hyperplane that best separates the data points, effectively finding a decision boundary that 
distinguishes the classes with the largest margin. In this context, SVM algorithms are used to create models that 
can make predictions based on known relationships between input and target variables, such as in classification 

(1)Support(X → Y) =
Patients having both X and Y

Total number of patients
.

(2)Confidence(X → Y) =
Patients having both X and Y

Patients having X
.

(3)Lift(X → Y) =

(

Patients having both X and Y
)(

Patients having X
)

Proportion of patients having Y
.
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problems, or continuous predictions in regression tasks. In the context of predictive modeling, SVM can be used 
to find a function that best predicts the value of the target variable using the input features. The computational 
complexity of SVMs is O(n2), where n is the number of data points. The time complexity is O(n2) for training 
and O(1) for prediction. The space complexity is O(n) for storing the model coefficients.

BF method
BF is a term that combines bootstrap aggregation (bagging) and RF. Bagging is a method that aims to enhance the 
accuracy and robustness of ML models by training multiple models on various subsets of the training data and 
then combining their predictions. RF is an ensemble learning method that creates multiple DT during training 
and outputs the class that is the mode of the classes of the individual trees. This method is used in supervised ML 
for both classification and regression tasks Therefore, BF refer to an ensemble learning method that combines 
the principles of bagging and RF. The computational complexity of BF is O(nlog n), where n is the number of 
data points. The time complexity is O(nlog n) for training and O(1) for prediction. The space complexity is O(n) 
for storing the model coefficients.

BT method
BT, such as Gradient Boosting are ensemble learning methods that combine the predictions of multiple weak 
learners to create a strong learner. These algorithms work by iteratively training and combining the predictions 
of weak learners, such as DT or linear regression models, to improve the overall accuracy and reduce overfit-
ting. In the context of predictive modeling, BT can be applied to predict the value of a target variable using the 
input features. The computational complexity of BT is O(nlog n), where n is the number of data points. The 
time complexity is O(nlog n) for training and O(1) for prediction. The space complexity is O(n) for storing the 
model coefficients.

NB method
NB is a ML approach that combines neural networks and boosting algorithms to enhance prediction accuracy. 
Boosting is an ensemble learning method that merges weak learners to create a strong learner, reducing train-
ing errors. In contrast, neural networks are ML algorithms capable of discerning intricate patterns in data. NB 
integrates these techniques by training a neural network on a subset of the training data and then using boosting 
to combine multiple neural networks, creating a more precise model. The process involves iteratively training a 
neural network on a subset of the training data and then adding the network to the ensemble. The weights of the 
neural network are adjusted to minimize the error of the ensemble. NB has demonstrated effectiveness in various 
applications, such as image classification, speech recognition, and natural language processing. However, NB 
has limitations, including the potential for overfitting and the requirement for large amounts of training data. 
Despite these limitations, NB is a potent ML technique that can enhance prediction accuracy across a variety 
of applications. The computational complexity of NB methods is O(n2), where n is the number of data points. 
The time complexity is O(n2) for training and O(1) for prediction. The space complexity is O(n) for storing the 
model coefficients.

To enhance the description of the proposed method, we have outlined the key steps of the implementation 
of our methodology using JMP software.

Key steps for the proposed methodology.

1. Load and preprocess the dataset

 Import the dataset into JMP

 Handle missing values

 Encode categorical variables

2. Apply association rule mining using the Apriori algorithm

 Use the Apriori node in JMP to extract association rules

 Set the minimum support and confidence thresholds

 Analyze the generated rules to identify frequent symptoms and patterns

3. Fit various machine learning models

 Use the Fit Model node in JMP to apply different models

 Stepwise Regression:

 Select the stepwise method and appropriate model type (e.g., Generalized Linear Model)

 Specify the response variable and predictor variables

 Perform stepwise selection based on the criteria

 Support vector machines (SVMs):

 Select the SVM model type (SVM Classifier)

 Set the kernel function and other relevant parameters

 Train the SVM model using the training data

 Bootstrap forest:

 Select the Bootstrap Forest model type

 Set the number of trees and other parameters

 Train the Bootstrap Forest model using the training data
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 Boosted trees:

 Select the Boosted Tree model type

 Set the number of trees, learning rate, and other parameters

 Train the Boosted Tree model using the training data

 Neural-boosted methods:

 Select the Neural Network model type

 Set the number of hidden layers, activation functions, and other parameters

 Train the Neural Network model using the training data

4. Evaluate model performance

 Use cross-validation to assess the performance of each model

 Calculate relevant metrics for each model

 Compare the performance of different models and select the best-performing one

5. Extract significant decision rules

 Use the Decision Tree node in JMP to generate decision rules

 Analyze the decision rules to identify relationships between symptoms and diseases

 Assess the significance and interpretability of the extracted rules

6. Interpret results and draw conclusions

 Summarize the key findings, including the performance of the best-performing model and the significant decision rules

 Discuss the implications of the results for improving disease prediction and clinical decision-making

The implementation of the methodology is available in the following GitHub repository: https:// github. com/ 
fsoga ndi/ disea se- sympt oms. git

Results
In this section, we analyze data to investigate disease symptoms using AR and predictive modeling.

Data preparation
As shown in Table 1, blood pressure and cholesterol level characteristics are nominal data type. Hence, we use 
the transformation method and encoding to have Binary variables that are then treated as numeric. On the 
other hand, in JMP software, to perform AR mining, the data needs to be in list format, and then it should be 
transformed to nominal format type. In this respect, we treated each patient as a single transaction. Then, we 
divided the dataset into three groups based on the patient’s age to transform a list format including: young adult, 
middle-age adults, and older adults. We initially applied AR mining to symptom data and identified symptom 
rules. Additionally, to identify and mange outliers, we apply the KNN (K = 8), robust principal component analy-
sis (with lambda = 0.107 and outlier threshold = 2),  T2, Mahalanobis, and Jackknife distances methods. Generally, 
results show that the rows of 1, 81, 122, 213 are outlier and should be excluded. Note that KNN identifies outliers 
based on distance to each observation nearest neighbors for theses rows as well as 39 rows that we ignore it. 
Figure 2 shows outliers using  T2, Mahalanobis, and Jackknife distances for instance.

After data preparation phase, we perform a descriptive statistical analysis to help more ML methods. Some 
of these investigations are provided here. In this regard, the dataset does not exhibit significant skewness, with 
only a few outliers present, and the gender distribution in the dataset is relatively balanced. Figure 3 shows that 
individuals have a higher likelihood of testing positive for diseases, in older age. Additionally, Fig. 4 shows fever 
is a main symptom of these diseases. This figure demonstrates many individuals, regardless of the type of experi-
ence (positive or negative), report coughing.

The more analytics using pie chart shows the majority of the individuals in the study have high blood pressure 
and cholesterol. Additionally, out of 348 patients, 185 tested positive for a disease. Only 23 of the positive cases 
developed all symptoms. The average age of the patients is 46, with the majority being middle-aged. However, 
positive cases are proportionally higher in older adults. A violin plot indicates that older adults have high blood 
pressure, but older adult to middle-aged patients also exhibit high blood pressure. The most common symptoms 
were fatigue (139 cases), fever (109 cases), breathing difficulty, and cough (both seen in 88 cases). Females are 
more prone to the diseases than Males.

Figure 2.  Outlier plot for the  T2, Mahalanobis, and Jackknife distances methods.

https://github.com/fsogandi/disease-symptoms.git
https://github.com/fsogandi/disease-symptoms.git


8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17956  | https://doi.org/10.1038/s41598-024-69029-8

www.nature.com/scientificreports/

AR in unsupervised ML
We used an a Apriori method to extract lift matrix-based strong rules. Symptom transactions are part of the AR 
mining which aims to identify frequent item sets that meet a minimum threshold. To achieve this, we set the 
minimum confidence level to 1, ensuring that all generated rules have a 100% confidence level. Additionally, 
we establish a minimum support threshold above 0.01 and a lift greater than 4 for positively correlated rules. 
This means that the rules generated must have a support value greater than 1% and a lift value greater than 4, 
indicating a strong positive correlation between the antecedent and consequent items. Furthermore, we limit 
the maximum number of antecedents to 3 and the maximum rule size to 4, ensuring that the generated rules are 
concise and interpretable. To do so, we discover many significant AR for the data, and the top 20 symptom rules 
by highest lift values are given in Table 2. Table 2 concentrates on the antecedents (diseases) associated with the 
consequents (symptoms) to predict asymptotes of diseases.

Table 2 shows diseases strongly linked to symptoms with a confidence of 100% (except for rule 18) and a lift 
greater than 1. A confidence level of 100% indicates a high degree of certainty. Lift measures the performance of 
an AR as a response enhancer. Lift values greater than 1 indicate interdependence between conditions and their 
outcomes, emphasizing positive relationships. Based on rule 2, if a patient had Chronic Obstructive Pulmonary 
Disease (COPD) (condition), then this patient had a higher confidence for breathing difficulty in older adults’ 
group (consequent). Specifically, Rule 1 suggests a positive association between Typhoid fever, high cholesterol, 
and fatigue, while rule 10 indicates that Hepatitis B increases the likelihood of coughing, fatigue, and high 
cholesterol. The results also demonstrate that demographic factors impact the relationships between symptom 
patterns and disease types. Additionally, the proposed model seeks to predict the potential disease of a patient 
based on their specific symptoms. In this regard, the 20 top rules are given in Table 3.

The associations in Table 2 exhibit a high confidence and a lift greater than 1, indicating a positive links. For 
example, Table 3 shows 5 rules related to COPD with a 100% confidence level and a notably high lift. According 
to these rules, older adults experiencing breathing difficulty, fever, high blood pressure, high cholesterol, and 
fatigue have a 67% chance of having COPD. Similarly, the presence of high cholesterol, high blood pressure, and 
breathing difficulty in older adults may indicate a higher likelihood of Rheumatoid Arthritis. Additionally, the 
model aims to predict potential diseases based on specific symptoms, while also considering the influence of 
demographic factors on symptom-disease associations. Furthermore, the unsupervised algorithm can identify 
relationships between symptoms and various attributes, aiding in the discovery of symptom relationships. In 
this respect, 25 rules are extracted in Table 4.

Figure 3.  Plot of outcome results in terms of age factor.

Figure 4.  Bar graph of some symptoms of the diseases.
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According to Table 4, among all rules, fever was the most common consequent. To describe the extracted 
rules, we focus on one rule for instance. Based on rule 1, if a patient has breathing and coughing problems and 
high blood pressure there is a 100% confidence that he or she had a fever. Similarly, Rule 2 highlights that when 
a patient experience both fatigue and high cholesterol, they will also have a fever. Moreover, the last rule shows 
that male patient with breathing difficulty who are strongly associated with fever, with a confidence of 90%. In 
general, our analysis from Tables 2–4 shows that the older adults age group strongly correlated with diseases 

Table 2.  Top extracted rules for predicting asymptotes of diseases.

Row

Rule

Confidence % LiftCondition Consequent

1 Typhoid fever High cholesterol, fatigue 100 93

2 COPD Breathing difficulty, older adults 100 93

3 COPD Breathing difficulty, older adults 100 62

4 Typhoid fever High cholesterol, fatigue 100 62

5 COPD Breathing difficulty, older adults, fatigue 100 62

6 COPD Breathing difficulty, older adults, fever 100 62

7 COPD Breathing difficulty, older adults, high blood pressure 100 62

8 COPD Breathing difficulty, older adults, high cholesterol 100 62

9 COPD Breathing difficulty, older adults, cough 100 62

10 Hepatitis B Cough, fatigue, high cholesterol 100 62

11 Typhoid fever Cough, high cholesterol, fatigue 100 62

12 Ebola virus Breathing difficulty, middle age group, high blood pressure 100 62

13 Ebola virus Breathing difficulty, middle age group, high cholesterol 100 62

14 Hepatitis B Fatigue, high cholesterol, middle age group 100 62

15 Hepatitis B Fatigue, high cholesterol, fever 100 62

16 Typhoid fever High cholesterol, middle age group, fatigue 100 62

17 Parkinson’s disease Middle age group, fatigue, high cholesterol 100 62

18 Rheumatoid arthritis High cholesterol, high blood pressure, older adults 67 62

19 Hepatitis B Cough, high cholesterol, fever 100 46.5

20 Lyme disease Middle age group, cough, fatigue 100 46.5

Table 3.  Top extracted rules for predicting diseases types conditional on observed asymptotes.

Row

Rule

Confidence % LiftCondition Consequent

1 High cholesterol, male, fatigue Typhoid fever 100 93

2 High cholesterol, fatigue, fever Typhoid fever 100 93

3 High cholesterol, high blood pressure, older adults Rheumatoid arthritis 100 62

4 High cholesterol, fatigue Typhoid fever 67 62

5 Breathing difficulty, older adults, fatigue COPD 67 62

6 Breathing difficulty, older adults, fever COPD 67 62

7 Breathing difficulty, older adults, high blood pressure COPD 67 62

8 Breathing difficulty, older adults, high cholesterol COPD 67 62

9 Breathing difficulty, older adults, cough COPD 67 62

10 Cough, fatigue, high cholesterol Hepatitis B 67 62

11 Cough, high cholesterol, fatigue Typhoid fever 67 62

12 Breathing difficulty, middle age group, high blood pressure Ebola virus 67 62

13 Breathing difficulty, middle age group, high cholesterol Ebola virus 67 62

14 Fatigue, high cholesterol, middle age group Hepatitis B 67 62

15 Fatigue, high cholesterol, fever Hepatitis B 67 62

16 High cholesterol, middle age group, fatigue Typhoid fever 67 62

17 High cholesterol, breathing difficulty, fatigue Typhoid fever 67 62

18 High cholesterol, fatigue, high blood pressure Typhoid fever 67 62

19 Middle age group, fatigue, high cholesterol Parkinson’s disease 67 62

20 High cholesterol, breathing difficulty, older adults Rheumatoid arthritis 67 41.3
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Table 4.  The AR for different symptoms.

Row

Rule

Confidence % LiftCondition Consequent

1 Cough, breathing difficulty, high blood pressure Fever 100 1.706422

2 Fatigue, high cholesterol Fever 100 1.706422

3 High blood pressure, no cough, no fever High cholesterol 97 1.563478

4 Cough, breathing difficulty, older adults age Fever 96 1.643221

5 Breathing difficulty, high blood pressure Fever 96 1.635321

6 Male, high cholesterol Fever 96 1.635321

7 Cough, breathing difficulty, high cholesterol Fever 96 1.63223

8 Breathing difficulty, male, older adults age Fever 95 1.628857

9 Cough, high blood pressure, high cholesterol Fever 95 1.625164

10 Breathing difficulty, high blood pressure, older adults age Fever 95 1.625164

11 Breathing difficulty, high blood pressure, high cholesterol Cough 95 2.007955

12 Breathing difficulty, high blood pressure, high cholesterol Fever 95 1.621101

13 High blood pressure, breathing difficulty, no fever High cholesterol 94 1.522251

14 Female, high blood pressure, no fever High cholesterol 93 1.509565

15 Older adults High cholesterol 93 1.505847

16 Breathing difficulty, high cholesterol Fever 93 1.584535

17 Breathing difficulty, older adults age Fever 92 1.575159

18 Cough, high cholesterol, older adults age Fever 92 1.569908

19 Breathing difficulty, high cholesterol, older adults age Fever 92 1.569908

20 Cough, breathing difficulty Fever 92 1.568063

21 Breathing difficulty, fever, high blood pressure Cough 91 1.929842

22 Cough, high cholesterol Fever 91 1.555855

23 Cough, breathing difficulty, high blood pressure High cholesterol 90 2.758782

24 Cough, high blood pressure, high cholesterol Breathing difficulty 90 3.116402

25 Breathing difficulty, male Fever 90 1.53578

Table 5.  Categorized diseases based on age using transaction list in AR method.

Transaction(age) Item sets (diseases)

19 Influenza

25 Asthma, common cold, eczema, influenza

28 Asthma, hyperthyroidism

29 Allergic rhinitis, anxiety disorders, common cold, depression, diabetes, gastroenteritis, liver cancer, pancreatitis, 
rheumatoid arthritis, stroke, urinary tract infection

30
Asthma, bipolar disorder, bronchitis, cerebral palsy, colorectal cancer, dengue fever, eczema, gastroenteritis, hepatitis, 
hypertensive heart disease, influenza, kidney cancer, migraine, multiple sclerosis, muscular dystrophy, myocardial 
infarction, sinusitis, ulcerative colitis, urinary tract infection

31 Asthma, common cold, migraine, osteoporosis

32 Pneumonia

35
Allergic rhinitis, asthma, atherosclerosis, chronic obstructive pulmonary…, cirrhosis, common cold, conjunctivitis 
(pink eye), depression, eczema, epilepsy, gastroenteritis, hypertension, hyperthyroidism, kidney cancer, liver cancer, 
liver disease, malaria, migraine, pancreatitis, pneumonia, psoriasis, rheumatoid arthritis, rubella, spina bifida, ulcera-
tive colitis, urinary tract infection, urinary tract infection

38 Allergic rhinitis, anxiety disorders, depression, diabetes, gastroenteritis, influenza, kidney disease, liver cancer, liver 
disease, migraine, osteoarthritis, osteoporosis, pneumonia, stroke

39 Klinefelter syndrome

40
Acne, asthma, brain tumor, bronchitis, chickenpox, coronary artery disease, cystic fibrosis, diabetes, eating disorders 
(anorexia,…, fibromyalgia, gastroenteritis, glaucoma, hemophilia, hyperthyroidism, hypoglycemia, lymphoma, osteo-
arthritis, pneumonia, psoriasis, rabies, tuberculosis

42 Anxiety disorders, common cold, depression, diabetes, hypothyroidism, influenza, kidney cancer, kidney disease, liver 
cancer, liver disease, lung cancer, migraine, osteoarthritis, stroke, urinary tract infection
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occurrence. Another analytic can be achieved from AR mining, gives in Table 5 in which the disease may be 
occurred in specified age are shown. To sum up, we provide some of the ages in this respect.

Moreover, we can identify diseases that have an affinity for each other using Singular Value Decomposition 
(SVD). Diseases that exhibit overlap, based on the SVD method, can be identified by leveraging the SVD tech-
nique. This approach decreases the dimensionality of the data, allowing for the grouping of similar diseases and 
the extraction of relevant information. Figure 5 and Table 6 show points or diseases that are close to each other.

Predictive modeling in supervised ML
Now, we aim to develop a model that can accurately predict diseases using the disease symptoms and patient 
profile dataset. As aforementioned, this dataset contains valuable information on symptoms, demographics, 
and health indicators, which can be used to reveal fascinating connections and patterns. After examining the 
“Disease” column, we found that many unique diseases have only 1 to 5 samples, which is insufficient for a reli-
able disease prediction model. Predicting diseases with such limited information could lead to inaccurate results 
and misdiagnosis, which we want to avoid. Therefore, we will focus only on the diseases that have 10 or more 
samples to ensure the robustness of our model. This decision will reduce the number of cholesterol asses we are 
predicting down to 6, making our model more accurate. On the other hand, using checking for and handling 
missing values and identifying and removing duplicate entries we can ensure that our data is accurate, complete, 
and ready for further analysis or model building. After cleaning our data, we have focused on diseases with 10 or 
more samples. Understanding the balance of cholesterol asses is crucial as it can impact the performance of our 
ML model. To visualize this, we have utilized a pie chart in Figure 6. This step is essential for ensuring that our 
model is trained on a well-balanced dataset, which can ultimately enhance its predictive accuracy and reliability.

The pie chart shows that the classes are imbalanced, and we need to handle class imbalance. Before that, we 
need to process our categorical variables to perform a univariate analysis. This analysis will help us understand 
the distribution of our variables and their individual impact on disease prediction. We will start with the age 
variable, followed by other variables like symptoms, gender, blood pressure, and cholesterol level.

The univariate analysis of the age variable in Fig. 7 reveals that age is a valuable feature for predicting certain 
diseases. For instance, if the age is greater than 80, the disease is likely to be a stroke. However, the dataset has 
limited samples, especially for ages greater than 80, which could make predicting new values in this age range 
challenging. The analysis also shows that some diseases like Migraine and Hypertension are not present in ages 
between 20 and 30, suggesting that these conditions are more prevalent in older age groups. Hypertension and 
Osteoporosis appear more frequently as the age increases, indicating a potential correlation between these dis-
eases and age. Also, cholesterol levels and blood pressure, significantly influence disease prediction. For exam-
ple, High blood pressure is associated with the absence of stroke, which is crucial for stroke prediction. These 
observations emphasize the importance of these variables in predicting diseases. The next step is to examine 

Figure 5.  Item SVD plots for the data set.

Table 6.  Diseases that exhibit overlap, based on the SVD method.

Lung cancer Influenza

Common cold Urinary tract infection

Allergic rhinitis Urinary tract infection

Sleep apnea Liver disease

Zika virus Anxiety disorders

Migraine Multiple sclerosis

Diabetes Eczema

Hypertension Ulcerative colitis

Rheumatoid arthritis Kidney cancer

Rabies Tuberculosis
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how these variables correlate with each other, which can help identify patterns and potential multicollinearity, 
ultimately influencing the model’s performance.

Figure 8 shows that none of the variables have a strong correlation with the “Disease” variable. The most 
correlated variables are “Age” and “Difficulty Breathing”, with scores of 1 and − 1, respectively. In situations 
where there are multiple variables with high correlation scores, ML can be a viable alternative for prediction 
tasks. However, it’s essential to consider that ML algorithms, typically require large amounts of data to perform 
optimally. In our case, we have only 79 data points, which is relatively small.

For hyperparameter tuning, we used the Grid Search method in JMP. Grid search is a simple and effective 
method for finding the optimal combination of hyperparameters by systematically varying each hyperparameter 
over a range of values and evaluating the performance of the model at each combination. We used a grid search 
with 10 iterations to find the optimal combination of hyperparameters for each model. For example, for the SR, 
we used a grid search to optimize the following hyperparameters:

• Stepwise selection: We used a grid search to optimize the stepwise selection method. We varied the number 
of features to include in the model from 1 to 10, and evaluated the performance of the model at each com-
bination.

• Lambda: We used a grid search to optimize the lambda value, which is a hyperparameter that controls the 
strength of the regularization term in the model. We varied the lambda value from 0.1 to 1.0, and evaluated 
the performance of the model at each combination.

For the SVMs, we used a grid search to optimize the following hyperparameters:

• Kernel: We used a grid search to optimize the kernel function, which is a hyperparameter that controls the 
shape of the decision boundary in the model. We varied the kernel function between linear, polynomial, and 
radial basis functions, and evaluated the performance of the model at each combination.

• Gamma: We used a grid search to optimize the gamma value, which controls the width of the kernel function. 
We varied the gamma value under (0.1–1) and evaluated the performance of the model at each combination.

Figure 6.  Pie chart for initial diseases classification.

Figure 7.  Bar graph of age-diseases.
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For the BF model, we used a grid search to optimize the following hyperparameters:

• Number of trees: We used a grid search to optimize the number of trees in the forest that controls the com-
plexity of the model. We varied the them under (10–100), and assessed the performance of the model at each 
combination.

• Max depth: We used a grid search to optimize the maximum depth of the trees, which is a hyperparameter 
that controls the complexity of the model. We varied the maximum depth from 5 to 10, and evaluated the 
performance of the model at each combination.

For the BT model, we used a grid search to optimize the following hyperparameters:

• Number of iterations: We used a grid search to optimize the number of iterations in the boosting algorithm, 
which is a hyperparameter that controls the complexity of the model. We varied the number of iterations 
from 10 to 100, and evaluated the performance of the model at each combination.

• Learning rate: We used a grid search to optimize the learning rate that controls the step size in the boosting 
algorithm. We varied it under (0.1–1) and evaluated the performance of the model at each combination.

For the NB methods, we used a grid search to optimize the following hyperparameters:

• Number of hidden layers: We used a grid search to optimize the number of hidden layers in the neural net-
work, which is a hyperparameter that controls the complexity of the model. We varied the number of hidden 
layers from 1 to 3, and evaluated the performance of the model at each combination.

• Number of neurons: We used a grid search to optimize the number of neurons in each hidden layer, which 
is a hyperparameter that controls the complexity of the model. We varied the number of neurons from 10 to 
100, and evaluated the performance of the model at each combination.

To conduct a fair comparison between different classifiers and identify the superior model with the best 
performance, we have considered and calculated several evaluation metrics that are well-suited for our specific 
case and dataset. The evaluation metrics we have included are:

(4)Accuracy =
(TP + TN)

(TP + TN + FP + FN)
,

(5)Precision =
TP

(TP + FP)
,

(6)Recall =
TP

(TP + FN)
,

Figure 8.  Correlation of each feature in the dataset using the heat map generated by JMP Pro 17 (version 17.2.1, 
available at https:// www. jmp. com/).

https://www.jmp.com/
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This is a crucial measure for evaluating imbalanced multi-class classification problems. A comparative assess-
ment of most common used ML classifiers is performed in Table 7 for analyzing and classifying diseases.

We used the confusion matrix to calculate different metrics, and the best results are marked in bold. As illus-
trated by Table 7, SR method is the superior model leading to the best performance with the accuracy of 86.73% 
(95% CI 82.69–90.71) and the precision of 75.36%. Besides, the corresponding criteria of recall and F1- measure 
and (Matthews Correlation Coefficient) MCC are 77.87, 81.31, and 54.02%, respectively. Based on these metrics, 
the “SR” model consistently performs well across evaluation criteria. To avoid additional complexity and keep 
this table simple to read, we preferred to exclude the standard deviation of each result metrics.

Overall, researchers focused on specific diseases or conditions mentioned in the dataset can utilize it to 
explore relationships between symptoms, age, gender, and other variables. Also, healthcare technology compa-
nies can use the proposed method based on ML methods for developing healthcare diagnostic tools. It is worth 
mentioning that the model shows strong performance in predicting asthma cases but struggles to predict other 
conditions, suggesting its potential use in a one-vs-all approach for asthma diagnosis. Notably, the training data 
is imbalanced, with asthma being the most frequent class. To address this, data augmentation techniques such 
as rotation, scaling, or adding noise could be implemented to improve the model’s accuracy in predicting less 
frequent diseases.

The study aims to identify common patterns and general rules across various diseases using ML techniques. 
By analyzing a diverse dataset, the research uncovers connections between symptoms, demographics, and health 
indicators, providing valuable insights for developing predictive models and early warning systems applicable to 
multiple diseases. It is worth noting that the decision to generalize the study across various diseases is grounded 
in several key considerations, including identifying common patterns, improving early detection, enhancing 
understanding, and practical implications. While the generalized approach offers several advantages, it is impor-
tant to acknowledge that the study may not capture disease-specific nuances or rare symptoms that are unique to 
particular diseases. Future research could focus on validating the identified patterns and rules in specific disease 
contexts or exploring the applicability of the findings to rare or understudied diseases. In conclusion, the decision 
to generalize the study across various diseases is justified by the potential benefits of identifying common pat-
terns, improving early detection, enhancing understanding, and providing practical implications for healthcare 
professionals. However, the limitations of this approach should be considered, and further research is needed to 
validate and refine the findings in specific disease contexts.

To improve the model’s ability to adapt to new, emerging diseases or changes in symptom presentation, the 
following strategies can be implemented in our approach:

We can easily implement a system to continuously collect and integrate new patient data into the training 
dataset, including information on emerging diseases and changing symptom patterns. The models can then be 
retrained on a regular cadence (e.g., monthly, quarterly) to ensure they remain up-to-date and can adapt to evolv-
ing disease landscapes. Additionally, we can monitor model performance on a holdout test set to identify when 
retraining is necessary due to degradation in predictive accuracy. This will help ensure the models can adapt to 
new, emerging diseases and changing symptom presentations. As a future research direction, we recommend 
exploring the use of ensemble learning techniques. Specifically, we suggest investigating the application of vari-
ous ensemble methods to further enhance the ability of the proposed models.

Statistical significance
Now, we use a statistical test to compare the proposed ML to ensure the statistical significance of the results and 
provide a robust comparison. Overall, the non-parametric tests are safer than parametric tests since they do 
not assume normal distributions or homogeneity of variance. In the case where multiple algorithms are to be 
compared, Friedman’s test is the most interesting non-parametric statistical test. In Friedman test, the blocks 
of data, are considered independent. The underlying variables in the data are typically numeric in nature. The 
goal of this test is to determine whether there are significant differences among the algorithms considered over 
given sets of data. Training/Test set is generated as random sample from the population. The Friedman rank 
test can determine if there are significant differences in variation, central tendency, or shape among at least one 

(7)F1− score =
2.TP

(2.TP + FP + FN)
,

(8)MCC =
2(TP.TN−FP.FN)

√
(TP + FP).(TP + FP).(TN + FP).(TN + FN)

.

Table 7.  Comparing the performance of different classifiers.

Method Accuracy (%) Precision (%) Recall (%) F1- measure (%) MCC (%)

SR 86.73 75.36 77.87 81.33 54.02

SVM 73.48 74.51 77.86 76.16 52.72

BF 84.36 71.36 80.24 70.23 45.68

BT 81.62 69.23 75.39 86.2 42.67

NB 78.92 59.42 55.69 52.68 36.75
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pair of the populations being compared. The test determines the ranks of the algorithms for each individual 
data set, i.e., the best performing algorithm receives the rank of 1, the second-best rank 2, etc.; in the case of ties 
average ranks are assigned. The Friedman test is performed in respect of average ranks, which use χ2

F . Consider 
r
j
i be the rank of the jth of k ML algorithms on ith of n data sets. The Friedman test compares the average ranks 

of algorithms, Rj . The null hypothesis states that all algorithms perform equivalently. Under this hypothesis the 
Friedman statistics is as follows:

in which χ2
F is distributed with k-1 degrees of freedom, when n and k are large enough. We can understand with 

comparing the corresponding statistics and χ2
F (4) with α = 0.05, the null hypothesis is rejected. In this regard, 

average rankings of the ML algorithms over the data sets by the Friedman test are shown in Table 8.

Feature importance and scoring
In the literature, two primary strategies for feature selection are Forward Selection (FS) and Backward Elimi-
nation (BE) for our classifier. FS starts by selecting the best single feature and then iteratively adds the feature 
that improves performance the most. Conversely, the BE begins with all considered features and repeatedly 
removes the feature that reduces performance the most. We conducted a series of experiments using fivefold 
cross-validation. The dataset was divided into 80% training cases and 20% test cases. In each fold, the training 
data was used to calculate the accuracy of a random forest classifier using different sets of features. The set of 
features that yielded the best accuracy was retained. The results are presented in Table 9.

The features were ranked incrementally based on their importance, with the most important feature labeled 
as one, the next most important feature labeled as two, and so on. Features with the “ignored” tag were removed 
from the dataset.

In the Forward Selection (FS) and Backward Elimination (BE) methods, we observe that the “age” and 
“breathing difficulty” features are consistently ranked as the most important, indicating its significant contribu-
tion to the model. Furthermore, we note that the “fatigue” feature is ranked last in both FS and BE, suggesting 
its relatively low relevance. Additionally, the “Blood pressure” feature is either ignored or ranked last in both 
methods, implying its minimal impact on the model. This further validates the effectiveness of our algorithm 
in ranking features.

Deployment challenges
Successful deployment of the ML models developed in this study necessitates careful consideration of the chal-
lenges to ensure effective implementation and adoption in real-world healthcare settings. The integration of 
these models into existing healthcare systems can pose significant challenges. Healthcare organizations often 
have complex and diverse IT infrastructures, with various systems and platforms in place. Seamless integration 
of the ML models into these existing systems is crucial for ensuring efficient data flow, accurate predictions, and 
effective decision support. Key considerations for integration include data compatibility, security and privacy, 
and scalability. Additionally, effective clinician training and adoption are crucial. Clinicians may be hesitant to 
rely on automated decision support systems, especially if they lack understanding of how the models work or 
have concerns about their accuracy and reliability. To address these challenges, the following strategies can be 
employed:

• Comprehensive training: Providing comprehensive training to clinicians on the use and interpretation of 
the ML models, including their strengths, limitations, and appropriate applications.
• Transparency: Ensuring that the ML models are as transparent and explainable as possible, allowing clini-
cians to understand the reasoning behind the predictions and build trust in the system.

χ2
F =

12n

k(k + 1)

(

∑

j
R2
j +

k(k + 1)2

4

)

,

Table 8.  Average rank position of ML algorithms determined during the Friedman test.

1-st 2-nd 3-rd 4-th 5-th

SR BF BT NB SVM

1.54 2.22 3.22 4.75 5.36

Table 9.  Results of feature selection on the dataset.

Method

Rank

Fever Cough Fatigue Breathing difficulty Age Gender Blood pressure Cholesterol level

FS using univariate feature 
selection 3 7 Ignore 2 1 4 6 5

Recursive BE with cross-
validation 3 6 Ignore 2 1 5 Ignore 4



16

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17956  | https://doi.org/10.1038/s41598-024-69029-8

www.nature.com/scientificreports/

• Continuous feedback and improvement: Establishing mechanisms for clinicians to provide feedback on the 
performance and usability of the ML models, enabling continuous improvement and adaptation to user needs.
• Incentives and support: Providing incentives and support for clinicians to adopt and integrate the ML models 
into their daily workflows, such as through performance metrics or dedicated support staff.

Successful deployment of ML models in healthcare requires careful consideration of integration challenges 
with existing systems and effective clinician training and adoption strategies. By addressing these challenges, 
healthcare organizations can effectively leverage the power of ML to improve patient outcomes and enhance 
clinical decision-making.

Conclusion and future research
Early disease prediction significantly enhances healthcare quality and can avert serious health complications. 
This proactive approach is particularly crucial due to the rise of new disease variants and the increasing avail-
ability of healthcare data. This study proposed an AI-based disease detection system for predicting diseases. 
Our results show several important results that enhance our diagnosing. In this regard, firstly we conduct data 
processing including data transformation and outlier detection, and then many significant AR was extracted 
based on Apriori algorithm. Generally, our research shows strong correlations between different variables, the 
occurrence of the diseases and medical conditions. For example, our study found that individuals in the older 
adults age group, those experiencing symptoms such as high cholesterol coughing and breathing difficulty have 
a strong relationship with Rheumatoid Arthritis. Additionally, various classification methods were applied to 
determine the best performing classifier, of the models investigated, SR method significantly outperformed the 
others. The proposed method can be used for medical practitioners, doctors, clinical analysis, and epidemiologi-
cal investigations related to different diseases. It also can aid in understanding the prevalence and patterns of 
symptoms among patients with specific medical conditions.

We acknowledge the limitations of their research, which was based on a provided dataset that may not fully 
represent the diversity of patient populations. We recognize the need for larger-scale studies to validate the gen-
eralizability of their findings to other settings and populations. The authors emphasize the importance of future 
research to confirm their findings and investigate underlying mechanisms in more detail.

Additionally, we suggest that future work could involve the use of other types of ARM methods, such as the 
Frequent Pattern Growth to discover patterns. Future studies could consider using multiple datasets to improve 
the robustness of the findings. Overall, exploring different approaches, including data augmentation, is crucial 
to enhance the model’s accuracy and enable more precise predictions across a wider range of conditions.

Data availability
The dataset used in this study is publicly available in the Kaggle repository https:// www. kaggle. com/ datas ets/ 
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